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Abstract. Rigorous equations in compact symbolic matrix notation are introduced to
transform coordinates and velocities between ITRF frames and modern GPS-based
geocentric geodetic datums. The theory is general but after neglecting higher than
second-order terms it is shown that the equations revert to the formulation currently
applied in most major continental datums. We discuss several examples: the North
American Datum of 1983 (NAD 83), European Terrestrial Reference System of 1989
(ETRS89), Geodetic Datum of Australia of 1994 (GDA94), and the South American
Geocentric Reference System (SIRGAS).

Introduction

Modern-day frame transformations have become increasingly complex to better
accommodate time-dependent processes such as plate tectonics and other geophysical
phenomena. In fact, many modern frame transformations extend the classical 7-parameter
Helmert transformation to complex 14-parameter formulations, which augment the
original 7 parameters with their time derivatives. In practice, this augmented formulation
is used to transform GPS densification results from one epoch to another epoch. Although
the treatment of 14-parameter transformations between geocentric terrestrial reference
frames has been published in geodetic literature with various degrees of rigor (e.g. Soler
1998; Sillard et al. 1998; Boucher et al. 1999; Altamimi et al. 2002; Soler and Marshall
2002), very little attention has been devoted to the extension of this formulation, in a
straight didactical manner, to the geodetic datum problem. This article complements the
theory previously given in Soler and Marshall (2002) and provides a direct practical
solution to the transformation between geocentric frames and geodetic datums; we focus
on four major continental datums currently in use. The discussion presented here is
intended to clear up the prevalent confusion about rotation of vectors (rigid body
rotation) used in plate kinematics vs. rotation of coordinate frames when both operations
are applied in the same transformation.

Theoretical concepts

In Soler and Marshall (2002) the general formulation to transform coordinates between
two arbitrary frames was given. Nevertheless, higher than second order terms were
neglected. Although the contribution of many of these terms can be ignored, some
readers are interested in the most rigorous approach possible and a complete set of
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equations is presented here. The mapping of our transformation is denoted
00( ) ( )D DITRF t ITRFyy t→  where Dt  denotes an epoch associated with a datum and

ITRF is an abbreviation for International Terrestrial Reference Frame. In this particular
case, the equation to transform coordinates given in the ITRF00 frame to the ITRFyy
frame under the condition that frame ITRF00 is not changing with time, and that the
coordinates of the stations are fixed in space (no velocities are involved) may be written
in compact matrix form as the well-known classical Helmert (similarity) transformation:

00{ ( )} { } (1 )[ ]{ ( )}D ITRFyy x D ITRFx t T s x tδ= + + ℜ      (1)

where the differential rotation matrix denoted by [ ]δℜ  in the above equation is given
explicitly by:
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     (2)

The superscript t stands for transpose, [I] denotes the 3×3 unit matrix, and [ ]tε is a skew-

symmetric (anti-symmetric) matrix containing the rotation parameters. To complete the
description of Eq. (1), it should be mentioned that all 3×3 matrices are represented
between brackets, 3×1 column vectors between braces, and scalars between parentheses.
Equation (1) is consistent with counter-clockwise (anti-clockwise) rotations of the axes x,
y, and z by angular amounts xε , yε , and zε  (expressed in radians), respectively. The

seven parameters involved in Eq. (1) are the standard Helmert transformation parameters
(three shifts, ,x yT T , and zT ; three differential rotations, ,x yε ε , and zε ; and one

differential scale change s), all of them given in the sense ITRF00 to ITRFyy at epoch Dt

which is common for the two sets of coordinates.

Assume now that the coordinates on frame ITRF00 are moving at a certain rate in space
with respect to this frame that remains fixed. In other words, we know the coordinates
and attached linear velocities at some arbitrary epoch t. Clearly, in this case, the Helmert
transformation takes the form:

00 00{ ( )} { } (1 )[ ] { ( )} ( ){ }D ITRFyy x ITRF D x ITRFx t T s x t t t vδ= + + ℜ + −� �      (3)

The implicit transformation in the above equation is the mapping
00( ) ( )DITRF t ITRFyy t→ where now t denotes the epoch of the initial coordinates (t

could be the actual time of observation of a GPS survey, e.g. 2003.3254), and Dt  is the

epoch of the final coordinates (e.g 1995.4000). Notice that in this compact notation the
vector of coordinates is abbreviated by { ( )} { ( ) ( ) ( )}tx t x t y t z t= ; velocities by

{ } { }t
x x y zv v v v= , etc. The main reason to use the subscript x in some parameters is to
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indicate that the components refer to the x, y, z frame and not, for example, to the local
geodetic frame, e.g. { } { }t

e e n uv v v v= where e, n, and u denote the directions toward

local east, north, and up, respectively.

Finally, assume that the Helmert parameters change with respect to time and that they are
given at epoch kt . In Eqs. (1) and (3) it was implicitly assumed that the Helmert

parameters were given at epoch Dt . In general these parameters will be defined at

different epochs k Dt t≠  where kt  is the epoch at which the Helmert transformation

parameters are given (e.g. kt = 2002.5000). Consequently, it is necessary to update the so-

called Helmert parameters from epoch kt  to epoch Dt  using the equations:

{ } { ( )} { ( )} ( ){ }x x D x k D k xT T t T t t t T≡ = + − �     (4)

[ ] [ ( )] [ ( )] ( )[ ]t t t t
D k D kt t t tε ε ε ε≡ = + − �     (5)

( ) ( ) ( )D k D ks s t s t t t s≡ = + − �     (6)

where dotted parameters indicate time derivatives. The derivative of e.g. [ ]tε with respect

to time ( [ ] /td dtε ) takes the form:
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� �
     (7)

Substituting Eqs. (4)-(6) into (3), and grouping terms, we arrive at:

2
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� �

� � � �       (8)

where, from now on, [ ] [ ] [ ( )]t
kI tδ εℜ = + .

In contrast with the formulation previously published in Soler and Marshall (2002), Eq.
(8) is complete and contains second and third-order terms.

Eq. (1) is consistent with counter-clockwise rotation of frame axes. However, when
applying body (vector) rotations such as in the case of plate kinematics, the skew-
symmetric matrix involved will be opposite in sign (Soler 1998). In this particular
instance the axes of the frame remain fixed while the position vectors (coordinates) are
rotated counter-clockwise about a fixed line going through the origin of the coordinate
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frame. This body rotation about an arbitrary line is termed "Euler rotation" by some
authors and "active rotation" by others and is the type of rotation implemented when the
theory of plate tectonics is discussed.

Thus, matrices of the form:

0

[ ] 0

0

z y

z x

y x

 −Ω Ω
 Ω = Ω −Ω 
 −Ω Ω 

� �
� � �

� �
       (9)

called the angular rotation matrix appear and are common in plate tectonic kinematics
literature. More about this will be discussed later.

Notice that 14 transformation parameters relating frames ITRF00 and ITRFyy are
required in Eq. (8). Seven are the standard Helmert transformation parameters, and the
remaining seven parameters are their variations with respect to time.

Continuing with the same compact matrix notation, it is possible to write the
transformation of velocities from frame ITRF00 to frame ITRFyy by simply taking the
derivative of Eq. (8) with respect to Dt :
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� �

� �

� �

� � (10)

Again, Eq. (10) is complete, and no terms are neglected as previously done in Soler and
Marshall (2002). Therefore, knowing the position and velocities of a point at the epoch of
observation t on frame ITRF00, the seven Helmert parameters between frames ITRF00
and ITRFyy at epoch kt and their seven rates, the coordinates and velocities of a point on

frame ITRFyy at epoch Dt  can be computed using Eqs. (8) and (10).

The datum problem

In the classical sense, a geodetic datum is a reference surface, generally an ellipsoid of
revolution of adopted size and shape, with origin, orientation, and scale defined by a
geocentric terrestrial frame. Once an ellipsoid is selected, coordinates of a point in space
can be given in Cartesian or geodetic (curvilinear) coordinates (geodetic longitude,
latitude, and ellipsoid height). Geodetic coordinates are preferred in cartographic and
mapping applications.

Furthermore, the classical concept of geodetic datum implies that a datum’s coordinates
are fixed and do not change with time except for the effect of local tectonic motions
(episodic motions, land subsidence, volcanic activity, etc.). Thus, the coordinate frame of
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a geodetic datum should be somewhat attached to the plate and move with it in such a
way that the coordinates of the points will not change as a consequence of plate rotation.
However, in actuality, the reverse process is implemented; that is, the coordinate frame is
fixed to the Earth’s mantle while the plates are rotated to their original position at epoch

Dt  (the datum epoch). This is achieved by applying the same type of correction at every

point. The magnitude of this correction is determined through the angular velocity matrix
associated with the continental plate where the points are located. In essence, all points
are moved back to their location at epoch Dt  on the frame ITRFyy which, in our

example, is assumed to be the adopted datum frame and, by definition, remains fixed. In
other words, the plate and the points on it are assumed frozen in space at the epoch when
the datum frame was defined; all coordinates determined at epoch t should be taken back
to epoch Dt , the datum epoch.

One way to apply plate motions in Eq. (8) is to replace the individual velocity of each
point --which generally is unknown-- by the velocity generated by the rotation of the
plate. It is known that the velocity of a point on a plate can be computed by:

00 00{ } [ ]{ ( )}x ITRF ITRFv x t= Ω�      (11)

where the matrix [ ]Ω�  is given explicitly in Eq. (9) and contains the components of the

counter-clockwise rotation of magnitude Ω�  about a rotation axis, defined by a line with
spherical longitude λ and spherical latitude φ :

arctan ; 0 2y

x

λ λ π
Ω

= ≤ ≤
Ω

�

�      (12)

2 2
arctan ;

2 2
z

x y

π πφ φΩ= − ≤ ≤
Ω +Ω

�

� �
     (13)

Values of ,x yΩ Ω� � , and zΩ� for the major tectonic plates are given in literature by various

authors. For example, McCarthy (1996, p. 14) tabulates the components of the angular
rotation vector Ω�  corresponding to the global geologic model (no net rotation) NNR-
NUVEL1A. More recently, a new model called REVEL based primarily on GPS
observations has been published (Sella et al. 2002). Alternatively, new values of Ω� , λ ,
and φ  for the Pacific, North American, and Australian plates determined through a
combination of geodetic space techniques were published by Beavan et al. (2003). In this
latter case the components of Ω� required in Eq. (9) are easily computed from

cos cos

{ } { } cos sin

sin
x x

φ λ
φ λ
φ

 
 Ω = Ω = Ω 
  

� � ��      (14)
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where{ } { }t
x x y zΩ = Ω Ω Ω� � � � . The column vector { }x� contains the direction cosines of the

so-called "Euler rotation axis." See Appendix A for a clarification between rotation of
vectors (active rotation) and rotation of frames (passive rotation).

In the datum problem we need to rotate the plate backwards to the datum epoch, thus, we

should insert Eq. (11) with [ ]Ω�  replaced by [ ]
tΩ� into Eq. (8). The transformation of

coordinates between the frame ITRF00 and a datum frame based on the ITRFyy frame
(denoted DITRFyy, where the D stands for "datum") considering the plate angular
velocity matrix takes the form:

2
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{ ( )} { ( )} ( ){ }

(1 ( ))[ ] ( )[(1 ( ))[ ] [ ] ( ) [ ] ]

[ ] ( )[ ] { ( )}

D DITRFyy x k D k x
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k D k k D k
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x t T t t t T

s t t t s t s t t s

I t t x t

δ ε δ ε

= + −

+ + ℜ + − + + ℜ + −

× + − Ω

�

� �� �

�

� �

� �

     (15)

The above equation permits the transformation of coordinates from epoch t (the epoch of
the GPS observations) referred to the GPS orbit frame used during processing (currently
ITRF00≡ IGS 2000) to coordinates referred to a predefined geodetic datum frame
denoted as DITRFyy. This notation implies that the adopted terrestrial reference frame
datum at epoch Dt  is ITRFyy. Also needed are the 14 parameters of the transformation

ITRF00→ ITRFyy assumed to be known at epoch tk and the matrix [ ]
tΩ� containing the

components of the angular velocity Ω� of the tectonic plate spanning the datum in
question.

The value of the velocities on the datum frame are obtained by differentiating Eq. (15)
with respect to Dt :
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(1 ( ))[ ] (2 ) (1 ( ))[ ] [ ] [ ] { ( )}
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s t t t t s t s x t

t t t t t t t t s

ε δ ε

δ ε δ

ε

= + + + ℜ + −

+ + ℜ + − − + + ℜ Ω

+ + − − + Ω
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�� �

���

� �

������������������������

� �

� �

� � 00{ ( )}ITRFx t

(16)

Keep in mind that for geodetic datums the plate is assumed fixed to the frame ITRFyy at

epoch tD. As a result, we substitute [ ] [0]
tΩ =�  and the velocities on the DITRFyy datum

take the simplified form:

00{ } { } (1 ( ))[ ] [ ] 2( ) [ ] { ( )}t t
x DITRFyy x k D k ITRFv T s t s t t s x tε δ ε= + + + ℜ + −� � �� �� �               (17)

Neglecting second order terms we arrive at:
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00{ } { } [ ] [ ] { ( )}t
x DITRFyy x ITRFv T s I x tε= + +� � �� �          (18)

Note that the velocity of a point on the datum frame DITRFyy in Eq. (18) is independent
of kt and the seven standard Helmert transformation parameters; however, the velocity of

a point is not independent of the rates. Thus, in the present GPS technological era, there
are small datum point velocities due to the changes with time of the Helmert parameters.
Because in the old classical datums these rates were ignored, the velocities referred to the
datum were exactly zero and the points did not physically move on the datum from epoch
to epoch. Ignoring these rates is not totally rigorous for accurate modern GPS-determined
datums.

Assuming that the Helmert parameters are given at epoch kt t= , Eq. (15) takes the form:
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ITRFx tΩ��

                                                                             ………………(19)

Finally, neglecting second and higher order terms we arrive at:

00

00

{ ( )} { ( )} (1 ( ))[ ]{ ( )}

( ) { } [ ] [ ] [ ] { ( )}

D DITRFyy x k k ITRF

t t
D x ITRF

x t T t s t x t

t t T s I x t

δ

ε

= + + ℜ

+ − + Ω + +� � � �� �� �
     (20)

This is the simplified equation currently used in most datum transformations.

In principle, the elements of the matrix [ ]
tΩ� could be arbitrarily selected; however, it

makes sense to use values which are closely related to the motion of the plate spanning
the area on which the geodetic datum is defined. Consequently, every datum definition
involves the adoption of a plate model.

Our unified convention assumes positive counter-clockwise rotation of coordinate axes
and vectors. We can write explicitly:
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    (21)

Another simplified form of Eq. (15) is:

00

00 00

{ ( )} { ( )} (1 ( ))[ ]{ ( )}

( ) { } [ ] [ ] { ( )} ( )[ ] { ( )}

D DITRFyy x k k ITRF

tt
D k x ITRF D ITRF

x t T t s t x t

t t T s I x t t t x t

δ

ε

= + + ℜ

+ − + + − Ω� �� �� ��� �
   (22)

where now the Helmert transformation parameters are given at arbitrary epoch tk .

The above equation is equivalent to:

00

00

{ ( )} { ( )} (1 ( ))[ ]{ ( )}

( ){ ( )} ( )[ ] { ( )}

D DITRFyy x k k ITRF

t

D k x D DITRFyy D ITRF

x t T t s t x t

t t v t t t x t

δ= + + ℜ

+ − − Ω��
   (23)

which is now written in the form adopted for transforming GPS positions to the European
Terrestrial Reference System of 1989 (Boucher and Altamimi 2001).

Equations (22) and (17) could be implemented for transforming coordinates and
velocities between the ITRF00 frame at the epoch of observation t and any geodetic
datum. The required input includes the standard Helmert parameters of the transformation
( , ,x y zT T T , , ,x y zε ε ε , s) given at epoch tk, and their rates ( , ,x y zT T T� � � , , ,x y zε ε ε� � � , s� ), and the

angular velocity components ( , ,x y zΩ Ω Ω� � � ) of a pre-specified plate model or an equivalent

set of input.

Brief review of continental datums

An important consequence of the recent GPS technological revolution is the
establishment, at the highest level of accuracy, of a number of geocentric geodetic
datums of continental extent. Next, we will briefly discuss the four major geodetic
datums currently in place.

The North American Datum of 1983 (NAD 83) is used everywhere in North America
except Mexico. This datum is realized in the conterminous United States and Alaska
(North American Plate) through the National CORS (Continuously Operating Reference
Stations) which provides the basis for obtaining rigorous transformations between the
ITRF series and NAD 83 as well as a myriad of scientific applications (Snay et al. 2002).



9

At this writing there are more than 330 National CORS sites participating in the network,
and this number continuously grows with the addition of several new stations each
month. The latest realization of NAD 83 is technically called NAD 83 (CORS96), epoch
2002.00, constituting the framework for the definition of the National Spatial Reference
System (NSRS). In Canada NAD 83 is also monitored through the Canadian Active
Control System. Thus, the two organizations responsible for monitoring and making
changes to the NAD 83 are the National Geodetic Survey (NGS) and Natural Resources
of Canada (NRCan). Mexico’s Instituto Nacional de Estadística, Geografía, e Informática
(INEGI), the Federal agency responsible for geodesy and mapping in the country,
adopted the geocentric frame ITRF92, epoch 1988.0, as the basis for their datum
definition. The realization of the datum is achieved through the Red Nacional Activa
(RNA) a 14 station network of permanent GPS receivers (Hernández-Navarro 1992).

A multinational European scientific organization, EUREF (European Reference Frame),
has developed an ambitious program in order to preserve, to the highest level of accuracy,
the European datum. Currently, it is called ETRS89 (European Terrestrial Reference
System of 1989) based on ITRF89, epoch 1989.0 and monitored by a network of about
150 permanent GPS trackers known as EPN (EUREF Permanent Network). More
information and a bibliography about ETRS89 and EPN may be found on the web at
http://epncb.oma.be.

The Geocentric Datum of Australia of 1994  (GDA94) is referred to the frame ITRF92, at
epoch 1994.0 (Featherstone, 1996; Steed and Luton, 2000). GDA94 is controlled by the
Australian Regional GPS Network (ARGN) which is presently comprised of a network of
15 GPS stations permanently tracking in Australia and its Territories, with the 10 stations
in Australia known as the Australian Fiducial Network (AFN). The organization
responsible for monitoring GDA94 is Geoscience Australia. More information related to
GDA94 is available at: http://www.auslig.gov.au/geodesy/datums/gda.htm.

The South American Geocentric Reference System (SIRGAS) was established to support
a unified geodetic and mapping frame for the South American continent. Most South
American and Caribbean countries participated in this enterprise which was later
extended to Central and North America. The adopted reference frame was ITRF94, epoch
1995.4. At this writing there is not an integrated continent-wide network of permanent
GPS receivers that monitor and provide transformations from ITRF to SIRGAS. Two
countries (Brazil and Argentina) have their own independent national CORS network
established. However, periodic continental adjustments of the GPS observations on a
continental scale are not performed at this time. There are several web pages with
abundant information about SIRGAS, such as:
http://www.ibge.gov.br/home/geografia/geodesico/sirgas/principal.htm

The datum transformation equations developed in this paper (Eqs. (22) and (17)) could be
specifically adapted to any of the above datums. In all equations that follow, as
mentioned before, t is the actual time of the GPS observation. This epoch is, generally,
the mean point of data time interval during which the GPS observations were collected.
Recall that the coordinates { ( )}x t refer to the frame of the GPS orbit (ephemeris) used in
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the reduction of the observations. Currently, it is the IGS00 (International GPS Service
2000) frame. It should be stressed that the IGS00 ephemeris frame is not exactly equal to
the ITRF00 frame. However, on a practical basis, both frames can be assumed equivalent.
The present difference is one of the questions that the international organizations
involved with generating GPS products should resolve as soon as possible to establish
rigorous consistency of information required in GPS applications. For example, in current
GPS differential positioning the orbit selected at the processing stage refers to the IGS
frame; however, the position of the fixed (reference) station is generally updated to the
epoch of observation using ITRF coordinates and velocities. In the present article we are
not concerned with other possible satellite orbits available to the GPS user such as
WGS84 (G1150) and GLONASS.

Transforming from ITRF00 to various geodetic datums

In this section, various forms of Eqs. (22) and (17) will be applied to each of the four
specific geodetic datums discussed above. Table 2 contains all 14-parameters given at
epoch tk required for transforming GPS data from the currently available ephemeris frame
(ITRF00≈ IGS00) at observation epoch t to each specific datum frame. Except for the
case of NAD83, the values contained in the Table were adapted from Boucher and
Altamimi (2000). As noted in Table 2, the tabulated values assume anti-clockwise
rotations positive, which is the notation followed through this paper.

NAD 83(CORS96)

For NAD 83 at Dt =2002.0 (see Table 1), Eq. (22) takes the form:

83 00

00 00

{ (2002.0)} { ( )} (1 ( ))[ ]{ ( )}

(2002.0 ) { } [ ] [ ] { ( )} (2002.0 )[ ] { ( )}

NAD x k k ITRF

tt
k x ITRF ITRF

x T t s t x t

t T s I x t t x t

δ

ε

= + + ℜ

+ − + + + − Ω� �� �� �� �

………………….(24)

A simplified version of the above equation was adopted by NGS and NRCan and is
currently used for transforming coordinates between ITRF00 and NAD 83. The explicit
form of the equations is given in Soler and Snay (2003). Table 2 presents the values of
the 14-transformation parameters as adopted by NGS and NRCan for the transformation
between ITRF00 and the latest realization of NAD 83 known as NAD 83 (CORS96). As
indicated in the table, kt =1997.0.

The velocity on the NAD 83 can be written using the simplified form:

83 00{ } { } [ ] [ ] { ( )}t
x NAD x ITRFv T s I x tε= + +� � �� �           (25)

If necessary, the coordinates on the NAD 83 at some other time, ct ≠ 2002.0, could be

determined using the equation:
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83 83 83{ ( )} { (2002.0)} ( 2002.0){ }c NAD NAD c x NADx t x t v= + −         (26)

Rigorously speaking, NAD 83 is not a geocentric datum because, as Table 2 shows, there
is a shift of about 2 meters in the y component of { }xT . This non-geocentricity results

from the TRANSIT Doppler System observations used in the definition of the original

NAD 83 datum (Schwarz 1989). The components of [ ]
tΩ� for the North American plate

required in Eq. (24) were extracted from the NNR-NUVEL1A global geologic model as
given in McCarthy (1996, p. 14) (See Table 3).

ETRS89

Using the compact matrix notation introduced here, the equations to transform positions
and velocities from the GPS derived ITRF00 frame to the European Terrestrial Reference
System of 1989 (ETRS89) could be written for Dt =1989.0 as

89 00

00 00

{ (1989.0)} { ( )} (1 ( ))[ ]{ ( )}

(1989.0 ) { } [ ] [ ] { ( )} (1989.0 )[ ] { ( )}

ETRS x k k ITRF

tt
k x ITRF ITRF

x T t s t x t

t T s I x t t x t

δ

ε

= + + ℜ

+ − + + − Ω� �� �� ��� �

………………………….(27)

89 00{ } { } [ ] [ ] { ( )}t
x ETRS x ITRFv T s I x tε= + +� � �� �      (28)

The 14 transformation parameters in the above equations are, by definition, those of the
mapping 00 89ITRF ITRF→ . They are given at epoch kt =1988.0 in Table 2. The values

of the elements of the matrix [ ]
tΩ� for the Eurasian plate were originally extracted from

the NNR-NUVEL1A model. If desired, equations similar to (26) could be written for
datum ETRS89.

GDA94

The Geodetic Datum of Australia was defined at epoch Dt =1994.0 based on the

terrestrial frame ITRF92. Positions and velocities on the GDA94 could be transformed
according to the equations:

94 00

00 00

{ (1994.0)} { ( )} (1 ( ))[ ]{ ( )}

(1994.0 ) { } [ ] [ ] { ( )} (1994.0 )[ ] { ( )}

GDA x k k ITRF

tt
k x ITRF ITRF

x T t s t x t

t T s I x t t x t

δ

ε

= + + ℜ

+ − + + − Ω� �� �� ��� �

     ………..……………..(29)

94 00{ } { } [ ] [ ] { ( )}t
x GDA x ITRFv T s I x tε= + +� � �� �          (30)

The 14 parameters of the transformation used in Eqs. (29) and (30) are given by the
mapping 00 92ITRF ITRF→  and are known at epoch kt =1988.0 (see Table 2). As far as

the authors were able to determine, no values for the elements of [ ]
tΩ�  have been selected
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yet for GDA94, although it is assumed that they will follow those of the Australian plate
according to some kinematic plate model.

SIRGAS

Transformations of positions and velocities from the GPS determined ITRF00 frame to
the South American Geocentric Datum of epoch Dt =1995.4 could be determined by the

equations:

00

00 00

{ (1995.4)} { ( )} (1 ( ))[ ]{ ( )}

(1995.4 ) { } [ ] [ ] { ( )} (1995.4 )[ ] { ( )}

SIRGAS x k k ITRF

tt
k x ITRF ITRF

x T t s t x t

t T s I x t t x t

δ

ε

= + + ℜ

+ − + + − Ω� �� �� ��� �

……...…………………..(31)

00{ } { } [ ] [ ] { ( )}t
x SIRGAS x ITRFv T s I x tε= + +� � �� �           (32)

Table 2 tabulates the 14 parameters of the transformation to be used given by the
mapping 00 94ITRF ITRF→ , which are known at epoch kt =1997.0. The values of the

South American plate angular rotation matrix [ ]
tΩ� were originally extracted from the

NNR-NUVEL1A model, although more recent determinations of [ ]
tΩ� are also suggested

as possible alternatives.

Conclusions

It should be clear by the theory described herein that the realization of a geodetic datum
using GPS observations involves two basic problems:

1) Accurate determination of ITRF coordinates using GPS methodology

2) Accurate transformation of these coordinates to the adopted datum frame at
some specified epoch Dt

However, the problem is slightly more complicated due to the possible influence on the
coordinates of local tectonic motions (earthquakes, volcanic uplift, subsidence, etc.) that
were totally neglected in this general discussion. If one wants to provide accurate
positions on both the ITRF and datum frames, episodic motions and other types of
geophysical disturbances should be taken into consideration and corrected for. Every time
an earthquake occurs, the GPS antennas and the ground marks near the epicenter move. It
is important to model and/or correct for these displacements to account for the change in
coordinates around the affected region. This situation is common along the San Andreas
Fault and other areas spanning the western states of the United States. Consequently,
NGS has developed a software package called Horizontal Time Dependent Positioning
(HTDP) to transform ITRF positions to NAD 83(CORS96); it incorporates major
earthquakes and other known local motions of geophysical origin. For more information
about HTDP consult Snay (1999). At this time, it appears that NAD 83 is the only
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continental datum where local tectonic motions are modeled and compensated for during
the transformation of positions from ITRFxx to the datum frame.

In view of inconvenient physical disturbances, it could be appropriate to ask if we should
extrapolate the old concept of geodetic datum of continental extent into the present era of
advanced GPS technology. Obviously, the definition of a continental datum is the only
available alternative for large land masses such as the United States, Australia, the
European Union, etc. However, thanks to GPS, in the near future each individual country
of sizable extent (Mexico was the first example) will be able to independently establish
their own CORS network and, as a byproduct, their own national geodetic datum. Using
the available IGS ephemeris, accurate geocentric coordinates referred to the latest
ITRFxx frame could be easily determined. Nevertheless, it is important to emphasize that
individual National agencies responsible for archiving the GPS data should make these
RINEX files available to the international scientific community, preferably through the
Internet, to facilitate a large array of global investigations currently under way (sea level
studies, ionospheric modeling, etc.). Using transformation equations such as the ones
discussed in this paper, the coordinates from any GPS densification network referred to
ITRFxx could be transformed to the regional reference datum and tailored to the
particular plate and geophysical conditions of the country at hand. Finally, ITRFxx and
datum coordinates should be disseminated for applications in all types of surveying,
mapping, GIS, and cadastral applications. Datum coordinates at epoch Dt  should then be

used for producing maps. With the type of accuracies currently obtainable through GPS
methodology, discontinuities along national borders of countries belonging to the same
tectonic plate will not be larger that 1-2 cm.

One added difficulty is introduced in the case of large continents, such as South America,
which contains political boundaries spanning several plates (Caribbean, South American,
Pacific, Nazca, Antarctica, etc.). This situation requires, by necessity, the adoption of
different values of [ ]Ω� , and thus, in essence, the definition of several datums. This is the

case for the NAD 83 which implements the velocities of the Pacific plate for stations in
Hawaii and the Mariana plate for stations in Guam. This problem is not so critical for
countries whose borders are located within a single plate. However, as discussed above,
even minor earthquakes can produce changes at the centimeter level to the coordinates of
an established datum, and procedures must be available to correct for these changes if an
accurate set of coordinates assigned to ground marks is intended at all times.

Equations of the type (22) also could be adapted to web-based utilities that supply the
GPS user with positional coordinates through the Internet. For example, NGS developed
OPUS (Online Positioning User Service) to provide interested GPS users positional
coordinates via email in a timely fashion, usually within a few minutes. The output of the
GPS processing includes ITRF as well as NAD 83 (CORS96) coordinates. Similar
utilities were independently developed by other institutions such as the Australian Online
GPS Processing Service (AUSPOS) (http://www.auslig.gov.au/geodesy/sgc/wwwgps/ ); Auto
Gipsy (AG) developed at JPL (http://www.unavco.ucar.edu/data_support/processing
/gipsy/auto_gipsy_info.html); and SCOUT (Scripps Coordinate Update Tool) developed by
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Scripps Orbit and Permanent Array Center (SOPAC) (http://sopac.ucsd.edu/cgi-
bin/SCOUT.cgi). Presently none of these latter utilities provide national datum coordinates.

In conclusion, rigorous equations to transform ITRF coordinates to current or future
geodetic datums are introduced in this paper. The theory is general and applies to existing
datums. Several datums are investigated including NAD 83, ETRS89, GDA94, and
SIRGAS.

It should be understood that the main application of the datum concept belongs to the
areas of surveying, cartography, and cadastral work. Accurate geodesy and geophysics
should be primarily concerned with the instantaneous position of points in space and their
time series behavior referred to geocentric frames of the IGS/ITRF type. The definition of
a datum, on the other hand, requires coordinates of points whose positions remain
constant in time, except when local tectonic motions disturb them. The datum definition
allows surveyors, cartographers, and GIS experts to avoid dealing with changing spatial
coordinates due to the ever present motion of the plates.
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A counter-clockwise active rotation of vectors (body rotation) by an angle Ω�  about a line
of direction cosines{ }x�  can be written in compact matrix notation as:

2( ) [ ] sin [ ] (1 cos )[ ]IΩ = + Ω + − Ω
l

� � �� ��     (A1)

This equation can be reduced by assuming a differential rotation Ω� , substituting
sinΩ ≈ Ω� � , cos 1Ω ≈� , and taking into consideration Eq. (14). The result is:

( ) [ ] [ ]Iδ Ω = + Ω
l

� ��                             (A2)

It can be easily proved by simple geometric arguments that an active counter-clockwise
rotation of vector coordinates is equivalent to a passive clockwise rotation of frames.
However, if we assume that all rotations (active and passive) are positive when rotated in
the counter-clockwise sense, a passive counter-clockwise rotation by an angle θ  around
the three frames i = 1,2,3, using the transpose of Eq. (A1) we can write:

2( ) [ ] sin [ ] (1 cos )[ ]t
i i iR Iθ θ θ= + + −� �       (A3)

The fact that 2[ ]i� is a symmetric matrix was taken into consideration to write Eq. (A3).

The symbols ; 1,2,3i i =�  correspond to the three direction cosines of the three Cartesian

axes, i.e., { }1 1 0 0
t=� ; { }2 0 1 0

t=� ; and { }3 0 0 1
t=� . For example, if we want

to obtain the standard counter-clockwise rotation about the first axis denoted as 1( )R θ , it

follows from Eq. (A3):

1

1 0 0 0 0 0 0 0 0 1 0 0

( ) 0 1 0 sin 0 0 1 (1 cos ) 0 1 0 0 cos sin

0 0 1 0 1 0 0 0 1 0 sin cos

R θ θ θ θ θ
θ θ

       
       = + + − − =       
       − − −       

                                                                                                            …………………(A4)

which reduces to the well-known definitions of counter-clockwise rotation around
coordinate axes ( ), 1,2,3iR iθ =  prevalent on the geodetic literature (Kaula 1966, p. 13;

Mueller 1969, p. 43). The reader should be reminded that the counter-clockwise positive
sense for rotations and the basic rotation matrices described above are adopted by most
scientists, and it is even assumed in the formulation presented in the set of IERS
conventions when discussing rotation of frames due to precession, nutation, and polar
motion.

APPENDIX B

The following partial derivatives based on Eqs. (8) and (10) are rigorous (no high order
terms are neglected).  This new set of partial derivatives should replace the original ones
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previously given in Soler and Marshall (2002) in order to have a consistent set of
transformation equations, and accompanying partial derivatives, totally independent of
any approximations. In our notation ℑ  is associated with the functional relationship of
Eq. (8); similarly, � is associated with Eq. (10).

[ ] [ ] [ ( )]t
kI tδ εℜ = +

2/ { } (1 ( ))[ ] ( ) (1 ( ))[ ] [ ] ( ) [ ] [ ]t t
k D k k Dx s t t t s t s t t s xδ ε δ ε∂ℑ ∂ = + ℜ + − + + ℜ + − = ∂� �� �� �

2/ { } ( ) (1 ( ))[ ] ( ) (1 ( ))[ ] [ ] ( ) [ ] [ ]t t
x D k D k k D xv t t s t t t s t s t t s vδ ε δ ε∂ℑ ∂ = − + ℜ + − + + ℜ + − = ∂� �� �� � � �

/ { ( )} [ ]x kT t I∂ℑ ∂ =

/ { ( )} (1 ( )) ( ) [ ] ( )[ ] [ ]k k D k D xt s t t t s x t t vε ε∂ℑ ∂ = + + − + − = ∂�� �� �

/ ( ) [ ] ( )[ ] { } ( ){ } { }t
k D k D xs t t t x t t v sδ ε∂ℑ ∂ = ℜ + − + − = ∂� � �� �

/ { } ( )[ ]x DT t t I∂ℑ ∂ = −�

2/ { } ( )(1 ( )) ( ) [ ] ( )[ ] [ ]D k k D k D xt t s t t t s x t t vε ε∂ℑ ∂ = − + + − + − = ∂� ��� �� �

2/ ( )[ ] ( ) [ ] { } ( ){ } { }t
D k D D xs t t t t x t t v sδ ε∂ℑ ∂ = − ℜ + − + − = ∂�� �� �� �

The partials of the functional relationship (10) with respect to the 14 transformation
parameters are:

/ { } [ ] / (1 ( ))[ ] [ ] 2( ) [ ] [ ]t t
D k D kx x t s t s t t s xε δ ε∂ ∂ = ∂ ∂ ∂ = + + ℜ + − = ∂� �� ��

2 2

/ { } [ ] / (1 ( ))[ ] (2 ( )) (1 ( ))[ ] [ ]

(3( ) 4 2 ( )) [ ] [ ]

t
x x D k D k k

t
D k D k k D x

v v t s t t t t s t s

t t t t t t t s v

δ ε δ

ε

∂ ∂ = ∂ ∂ ∂ = + ℜ + − + + + ℜ

+ + − + − = ∂

� �

��

� � �

/ { ( )} [0]x kT t∂ ∂ =�

/ { ( )} [ ] / (1 ( ))[ ] [ ] (2 ( ))[ ] [ ]k D k x D k xt t s t v s x t t t vε ε ε∂ ∂ = ∂ ∂ ∂ = + + + − + = ∂�� � �

/ ( ) { }/ [ ]{ } [ ] { } (2 ( )){ } { }t
k D x D k xs t s t v x t t t v sδ ε∂ ∂ = ∂ ∂ ∂ = ℜ + + − + = ∂�� � �

/ { } [ ]xT I∂ ∂ =��
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2 2

/ { } [ ] / (1 ( )) [ ] (2 ( ))[ ]

2( )[ ] (3 4 2 ( ))[ ] [ ]

D k D k x

D k D k D k k D x

t s t x t t t v

s t t x t t t t t t t v

ε ε

ε

∂ ∂ = ∂ ∂ ∂ = + + − −

+ − + + − + − = ∂

� �

��

� � �

� �

2 2

/ { }/ [ ] { } (2 ( )){ }

[ ] 2( ){ } (3 4 2 ( )){ } { }

D D k x

t
D k D k D k k D x

s s t x t t t v

t t x t t t t t t t v s

δ

ε

∂ ∂ = ∂ ∂ ∂ = ℜ + − +

+ − + + − + − = ∂

� �

� �

� � �

� �
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Table 1. Transformations from ITRF00 to other major datum frames and datum epochs.

NAD83 (CORS96)         ETRS89           GDA94         SIRGAS

ITRF00→ NAD83

Dt =2002.00

ITRF00→ITRF89

Dt =1989.0
ITRF00→ITRF92

Dt =1994.0
ITRF00→ITRF94

Dt =1995.4
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Table 2. Transformation parameters and their rates from ITRF00 to other frames.

  ITRF00→
     NAD83 ITRF89 ITRF92 ITRF94

kt =1997.0 kt =1988.0 kt =1988.0 kt =1997.0

xT 99.56 2.97 1.47 0.67

yT -190.13 4.75 1.35 0.61

zT

cm

-52.15 -7.39 -1.39 -1.85

xε 25.915 0.00 0.00 0.00

yε 9.426 0.00 0.00 0.00

zε

mas

11.599 0.18 0.18 0.00

s ppb 0.62 5.85 0.75 1.55

xT� 0.07 0.00 0.00 0.00

yT� -0.07 -0.06 -0.06 -0.06

zT�

cm/y

0.05 -0.14 -0.14 -0.14

xε� 0.013 0.00 0.00 0.00

yε� -0.015 0.00 0.00 0.00

zε�
mas/y

-0.020 -0.02 -0.02 -0.02

s� ppb/y -0.18 0.01 0.01 0.01

Note: All rotations are given counterclockwise positive; mas = milliarc second; ppb =
parts per billion � 10-6 ppm.
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Table 3. Angular velocity components according to two models for the four plates
spanning the major continental datums.

                       PLATE   NORTH
 AMERICA   EURASIA AUSTRALIA

  SOUTH
 AMERICA

ANGULAR
VELOCITY

MODEL mas/y mas/y mas/y mas/y

NNR-NUVEL1A 0.0532 -0.2023 1.6169 -0.2141        xΩ�

REVEL 0.1358 -0.1030 1.4534 -0.2454

NNR-NUVEL1A -0.7423 -0.4940 1.0569 -0.3125
yΩ�

REVEL -0.7036 -0.4763 1.1463 -0.2422

NNR-NUVEL1A -0.0316 0.6503 1.2957 -0.1794
zΩ�

REVEL -0.0299 0.7882 1.2893 -0.1669

Note: The signs of the rotations are consistent with counter-clockwise positive rotation of vectors. Some of
the differences noted above maybe due to the fact that REVEL gives rotations relative to ITRF97 whereas
NNR-NUVEL1A the rotations are given with respect to a "no-net-rotation" frame.


